The papers distributed in class claim the CSP to provide a number of advantages over the PSP. List two of these claims, and describe the data used to support the claims.

Quiz 3
MS Name:

Use one of the methods discussed in lecture to derive an asymptotic bound $(T(n)=$ $\Theta())$ for the following recurrence:

$$
T(n)= \begin{cases}1 / 8 & \text { if } n=1 \\ 2 T(n / 3)+n^{2} & \text { if } n>1\end{cases}
$$

Quiz 4	$\mathbf{M S}$
$\mathbf{O E}$	

Is the following sequence a heap? Justify your answer.
[23 171461310157 12]

Suppose we use a randomized version (the pivot is picked at random) of the Select algorithm discussed in class and in Chapter 10 of the text to select the minimum element of the array $\mathrm{A}=\langle 3,2,9,0,7,5,4,8,6,1\rangle$. Describe a sequence of partitions that result in a worst-case performance for our algorithm and identify the time complexity (using Θ notation) for the worst-case senario.

Recall that the Select algorithm discussed in lecture was:

Select(vector A[1..n], int p, int r, int i)

```
\{ // Returns \(i^{\text {th }}\) order statistic
    if ( \(p=r\) )
        return A[p]
    \(\mathrm{q} \leftarrow\) Partition (A, \(\mathrm{p}, \mathrm{r}\) )
    \(k \leftarrow q-p+1\)
    if ( \(\mathrm{i} \leq \mathrm{k}\) ) \{
        return Select(A, p, q, i)
    \} else \{
        return Select (A, \(q+1, r, i-k)\)
    \}
\}
```

MS Name:

Show the ordering of vertices produced by a topological sort of the following DAG. When more than one search option is available, your algorithm should select the rightmost option.

Quiz 8	OE

Compare and contrast Kruskal's and Prim's algorithms.

Do the following rotations on the graph below:

- Right-Rotate(16)
- Right-Rotate(14)

What additional rotations are needed in order to produce a tree with a height of three?

