Quizzes gg Name:

I lab 2 you where to use the adapter pattern to allowMife/_IN andWAV_OUT
classes to work with thEolder class. Describe how your solution to the lab was similar
to the examples of the Adapter pattern in the book. Describe how your solution differed
from the examples in the book.

@ Spring 2004 SE-281-2

Quizzes gg Name:

Complete the sequence diagram below describing the call sequence used to create a
summary of thealbum andsong objects.

hain album ;. Folder song ¢ wisitorob]
WaveFile summaryisitor

@ Spring 2004 SE-281-2

Quizzes Name:
OB

Rewrite thecreateAbstractFactoryMaze to create the following standard standard
maze:

L~
2 3
Recall the following:
class MazeFactory {
public
/1
virtual Mazex makeMaze() const ;
virtual Wallx makeWall () const ;
virtual Rooms+ makeRoom(unsigned int rmNum) const ;
virtual Doorx makeDoor(Room« rml = NULL, Roomx rm2 = NULL) const ;
/1
+s

@ Spring 2004 SE-281-2

Quizzes Name:
OB

int main()

{
MazeFactory factory;
Mazex mazePtr = createAbstractFactoryMaze (factory);
return EXIT_SUCCESS;
}
Mazex createAbstractFactoryMaze (MazeFactory& factory)
{
Mazex theMaze = factory.makeMaze();
Rooms« rl = factory.makeRoom(1);
Room« r2 = factory.makeRoom(2);
Rooms« r3 = factory.makeRoom(3);
Doorx drl = factory.makeDoor(rl, r2);
Doorx dr2 = factory.makeDoor(r2, r3);
theMaze—addRoom(r1);
theMaze—addRoom(r2);
theMaze—addRoom(r3);
rl—setSide (Room:: North, factory.makeWall());
rl—setSide (Room:: East, factory.makeWall());
rl—setSide (Room:: South, drl);
rl—setSide (Room:: West, factory.makeWall());
r2—>setSide (Room:: North, drl);
r2—setSide (Room:: East, dr2);
r2—setSide (Room:: South, factory.makeWall());
r2—setSide (Room:: West, factory.makeWall());
r3—>setSide (Room:: North, factory.makeWall());
r3—>setSide (Room:: East, factory.makeWall());
r3—>setSide (Room:: South, factory.makeWall());
r3—>setSide (Room:: West, dr2);
return theMaze;
}

Recall theAudioClipManager class developed in class:

class AudioClipManager {
public
static AudioClipManagerx getlnstance ();
void play(AudioClip* clip);
void stop ();
static void cleanUp ();
/1
private
AudioClipManager ();
“AudioClipManager ();
static AudioClipManager= instance;
static AudioClipx prevClip; // Clip that may still be playing from
/I previous function call
+s

Draw the sequence diagram for the code inftive loop below:

int main()

@ Spring 2004 SE-281-2

Quizzes '(\gg Name:

AudioClip song(/«whatever it takes to actually create one of thesex/);
for (unsigned int i=0; i<3; ++i) {
(AudioClipManager :: getinstance())—>play(&song);

return EXIT_SUCCESS;
+

@ Spring 2004 SE-281-2

Quizzes Name:
OB

AudioClipx AudioClipManager:: prevClip = NULL;

AudioClipManager :: AudioClipManager ()

{
}

AudioClipManager ::~ AudioClipManager ()

{
}

AudioClipManager* AudioClipManager:: getinstance ()

if (instance==NULL) {
instance = new AudioClipManager;

}

return instance;

}

void AudioClipManager :: play (const AudioClip& clip)

if (prevClip!=NULL) {
stop ();

prevClip = clip;
/] start playing

}

void AudioClipManager :: stop ()

/I stop playing

void AudioClipManager ::cleanUp ()

if (instance) {
delete instance;
}
}

¢ Spring 2004

SE-281-2

Quizzes Name:
OB

Explain how thecommand pattern can be used to facilitate “undo/redo” support. Dis-
cuss the two techniques used to implement this action.

@ Spring 2004 SE-281-2

Quizzes

o=

Name:

Suppose theState pattern is used to implement a singly-linked list class. Indicate
what classes associated with the State pattern should be created (along with member
functions) in order to handle the following operations:

{

SLList<int > Ist;

Ist.push_front(1);
Ist.push_front(2);
Ist.push_front(3);

Draw a sequence diagram describing the sequence of events for the above code.
You may assume that the state objects are already created (just tell me what they are).

Spring 2004

SE-281-2

