[You may use a single side of an 8.5×11 in sheet of paper for reference.] In this exam, wk8.Stack, wk8.Queue, wk8.CircularQueue, and wk10.BST refers respectively to stack, queue, circular queue, and binary search tree implementations created in lecture.

1. (20 points) True/False (T or F)

- ____ The lterator.hasNext() method will throw a NoSuchElementException called on a completely empty collection.
- The List.remove() method is more efficient than the lterator.remove() method since the list knows more about the underlying data structure than the iterator.
- _____ The List.listlterator(index) returns an iterator that begins just before the position index.
- _____ A ListIterator can be used to navigate both forward and backward over a Collection.
- _____ The ListIterator is a subinterface of the Iterator interface.
- _____ The enhanced for loop makes use of an iterator to navigate the collection.
- Iterator objects throw an IllegalStateException if they are asked to retrieve the next element after all elements have been processed.
- If a call to java.util.lterator.remove() is not preceded by a call to next(), an IllegalState-Exception will be thrown.
- _____ The lterator interface declares the iterator() method.
- _____ The Collection.forEach() method relies on an iterator to navigate the collection.
- When creating JUnit tests, a method annotated with **@BeforeAll** is run once before each method annotated with **@Test**.
- _____ System tests should be performed after integration tests.
- _____ java.util.Queue is an interface.
- _____ java.util.Stack is an interface.
- It is appropriate to adapt either the java.util.LinkedList or java.util.ArrayList to implement the PureStack interface.
- _____ A recursive method must have at least one base case.
- _____ The recursive case is when we call the same method at least once.
- You cannot always write an iterative solution to a problem that is solvable by recursion.
- _____ The Set interface extends the Iterable interface.
- _____ The Map interface extends the Iterable interface.

2. (8 points) Explain concisely and precisely why the asymptotic time complexity for finding where to insert an element into a complete binary search tree is $O(\log(n))$.

3. (8 points) What is the worst possible O() time for contains() if the binary search tree is not balanced? Justify your answer.

4. (7 points) For a binary tree (not a binary search tree), what is the O() time for contains()? Justify your answer.

5. (7 points) For arbitrarily long data structures, it makes more sense to implement the Queue interface using a LinkedList instead of an ArrayList as the fundamental data structure on which the implementation is built. Explain why this is the case.

6. (15 points) Implement a non-recursive version of the contains method for a binary search tree. Assume that an empty tree has a root==null.

Name:

MS OE

7. (15 points) Suppose we have triangle made of blocks. The topmost row has 1 block, the next row down has 2 blocks, the next row has 3 blocks, and so on. Compute recursively (no loops or multiplication) the total number of blocks in such a triangle with the given number of rows.

*	*	*	*
	* *	* *	* *
		* * *	* * *
			* * * *
1	3	6	10

public static int triangle(int rows) {

8. (a) (15 points) Suppose we have a TrinaryTree<E> where each Node<E> contains four attributes: E value, Node<E> IKid, Node<E> cKid, and Node<E> rKid. Implement the recursive version of TrinaryTree.size() method that is called by the method below such that the method returns the number of elements in the tree.

```
public int size() {
    return size(root);
}
```

(b) (5 points) Use big-oh notation to describe the overall worst case time complexity for your algorithm. Be sure to explain your reasoning.